skip to main content


Search for: All records

Creators/Authors contains: "Török, T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Observations have shown a clear association of filament/prominence eruptions with the emergence of magnetic flux in or near filament channels. Magnetohydrodynamic (MHD) simulations have been employed to systematically study the conditions under which such eruptions occur. These simulations to date have modeled filament channels as 2D flux ropes or 3D uniformly sheared arcades. Here we present MHD simulations of flux emergence into a more realistic configuration consisting of a bipolar active region containing a line-tied 3D flux rope. We use the coronal flux-rope model of Titov et al. as the initial condition and drive our simulations by imposing boundary conditions extracted from a flux emergence simulation by Leake et al. We identify three mechanisms that determine the evolution of the system: (i) reconnection displacing footpoints of field lines overlying the coronal flux rope, (ii) changes of the ambient field due to the intrusion of new flux at the boundary, and (iii) interaction of the (axial) electric currents in the preexisting and newly emerging flux systems. The relative contributions and effects of these mechanisms depend on the properties of the preexisting and emerging flux systems. Here we focus on the location and orientation of the emerging flux relative to the coronal flux rope. Varying these parameters, we investigate under which conditions an eruption of the latter is triggered.

     
    more » « less
  2. Abstract

    We propose a new “helicity-pumping” method for energizing coronal equilibria that contain a magnetic flux rope (MFR) toward an eruption. We achieve this in a sequence of magnetohydrodynamics relaxations of small line-tied pulses of magnetic helicity, each of which is simulated by a suitable rescaling of the current-carrying part of the field. The whole procedure is “magnetogram-matching” because it involves no changes to the normal component of the field at the photospheric boundary. The method is illustrated by applying it to an observed force-free configuration whose MFR is modeled with our regularized Biot–Savart law method. We find that, in spite of the bipolar character of the external field, the MFR eruption is sustained by two reconnection processes. The first, which we refer to as breakthrough reconnection, is analogous to breakout reconnection in quadrupolar configurations. It occurs at a quasi-separator inside a current layer that wraps around the erupting MFR and is caused by the photospheric line-tying effect. The second process is the classical flare reconnection, which develops at the second quasi-separator inside a vertical current layer that is formed below the erupting MFR. Both reconnection processes work in tandem with the magnetic forces of the unstable MFR to propel it through the overlying ambient field, and their interplay may also be relevant for the thermal processes occurring in the plasma of solar flares. The considered example suggests that our method will be beneficial for both the modeling of observed eruptive events and theoretical studies of eruptions in idealized magnetic configurations.

     
    more » « less
  3. Abstract

    Understanding the magnetic structure of filament channels is difficult but essential for identifying the mechanism (s) responsible for solar eruptions. In this paper we characterize the magnetic field in a well-observed filament channel with two independent methods, prominence seismology and magnetohydrodynamics flux-rope modeling, and compare the results. In 2014 May and June, active region 12076 exhibited a complex of filaments undergoing repeated oscillations over the course of 12 days. We measure the oscillation periods in the region with both Global Oscillation Network Group Hαand Solar Dynamics Observatory (SDO) Advanced Imaging Assembly EUV images, and then utilize the pendulum model of large-amplitude longitudinal oscillations to calculate the radius of curvature of the fields supporting the oscillating plasma from the derived periods. We also employ the regularized Biot–Savart laws formalism to construct a flux-rope model of the field of the central filament in the region based on an SDO Helioseismic and Magnetic Imager magnetogram. We compare the estimated radius of curvature, location, and angle of the magnetic field in the plane of the sky derived from the observed oscillations with the corresponding magnetic-field properties extracted from the flux-rope model. We find that the two models are broadly consistent, but detailed comparisons of the model and specific oscillations often differ. Model observation comparisons such as these are important for advancing our understanding of the structure of filament channels.

     
    more » « less
  4. null (Ed.)
  5. Context. On 2020 November 29, an eruptive event occurred in an active region located behind the eastern solar limb as seen from Earth. The event consisted of an M4.4 class flare, a coronal mass ejection, an extreme ultraviolet (EUV) wave, and a white-light (WL) shock wave. The eruption gave rise to the first widespread solar energetic particle (SEP) event of solar cycle 25, which was observed at four widely separated heliospheric locations (∼230°). Aims. Our aim is to better understand the source of this widespread SEP event, examine the role of the coronal shock wave in the wide distribution of SEPs, and investigate the shock wave properties at the field lines magnetically connected to the spacecraft. Methods. Using EUV and WL data, we reconstructed the global three-dimensional structure of the shock in the corona and computed its kinematics. We determined the magnetic field configurations in the corona and interplanetary space, inferred the magnetic connectivity of the spacecraft with the shock surface, and derived the evolution of the shock parameters at the connecting field lines. Results. Remote sensing observations show formation of the coronal shock wave occurring early during the eruption, and its rapid propagation to distant locations. The results of the shock wave modelling show multiple regions where a strong shock has formed and efficient particle acceleration is expected to take place. The pressure/shock wave is magnetically connected to all spacecraft locations before or during the estimated SEP release times. The release of the observed near-relativistic electrons occurs predominantly close to the time when the pressure/shock wave connects to the magnetic field lines or when the shock wave becomes supercritical, whereas the proton release is significantly delayed with respect to the time when the shock wave becomes supercritical, with the only exception being the proton release at the Parker Solar Probe. Conclusions. Our results suggest that the shock wave plays an important role in the spread of SEPs. Supercritical shock regions are connected to most of the spacecraft. The particle increase at Earth, which is barely connected to the wave, also suggests that the cross-field transport cannot be ignored. The release of energetic electrons seems to occur close to the time when the shock wave connects to, or becomes supercritical at, the field lines connecting to the spacecraft. Energetic protons are released with a time-delay relative to the time when the pressure/shock wave connects to the spacecraft locations. We attribute this delay to the time that it takes for the shock wave to accelerate protons efficiently. 
    more » « less
  6. null (Ed.)